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The toughness of a composite containing short 
brittle fibres 

J. K. WELLS,*  P. W. R. B E A U M O N T  
Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 I PZ, UK 

A method is presented whereby various potential contributions to the toughness of a polymer 
containing short brittle fibres can be quantified. It relies on a model for predicting the cumu- 
lative probability distribution of fibre pull-out lengths. The method reveals that toughness 
increases to a maximum value with increasing fibre length. Good agreement between theory 
and experiment supports the validity of our approach. 

1. Introduct ion  
A composite containing randomly dispersed, aligned 
short fibres of  uniform strength will always exhibit 
fibre pull-out preceding fast fracture (Fig. 1). If  the 
(frictional) shear stress, ~, at the fibre-matrix interface 
is maintained during the extraction of a fibre, then the 
average work done in pulling out a fibre whose length 
is l and diameter is d is approximately [1]: 
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The limit l/2 is chosen rather than l since a fibre is 
always likely to pull out from a matrix fracture surface 
beneath which it is least embedded (Fig. 1). 

For  the case where fibres are longer than a criti- 
cal length*, /~, a fraction, l~/l, only, of  the fibres are 
extracted, while the remainder break in the plane of 
the matrix crack. The average work to pull the fibre 
out of  its socket is approximately [1]: 

2 ;i c/2 dl 

= 24 (2) 

In physical terms, the work of  fibre pull-out is depen- 
dent upon the (frictional) shear stress, r, at the inter- 
face which is related to the coefficient of friction, #, 
and the pressure of  the matrix on the fibre normal to 
its surface, for example the shrinkage of epoxy on 
to a carbon fibre during processing. (This, in turn, 
is related to the fibre-matrix misfit strain, s0, that 
appears in Equation 3a below). But of  particular 
importance to this model, Equation 2 predicts that the 
work of fibre pull-out tends to zero as the length, l, of 
a fibre that is uniformly strong increases to infinity 
(Fig. 2). The inference is that the toughness of  the 
composite can be equated to the fracture energy of the 
matrix, or some fraction of it, in the absence of pull- 

out or any other toughening mechanism. This is not 
universally true; for an epoxy containing long carbon 
fibres we measure a toughness of the order of 104j m -2 
which is two orders of magnitude greater than that of 
the unreinforced matrix [2]. Examination of a fracture 
surface of the carbon fibre composite in the scanning 
electron microscope reveals broken fibres of various 
lengths protruding above the fracture plane of  the 
cracked matrix [2]. This is because of the variation in 
strength of  the carbon along its length and the snap- 
ping of the fibre at one (or more) of the weaker points 
beneath the surface of the matrix fracture plane [2]. 

2. The energetics of fibre debonding, 
fibre fracture and fibre pull-out 

The problem of identifying the dominant mechanism of 
fracture can be tackled in two complementary ways; 
either the dominance of  the more easily recognisable 
mechanisms like fibre pull-out are determined by opti- 
cal or electron microscopy [2, 3], or alternatively, a link 
is made between our understanding of  these mech- 
anisms and theoretical models [4, 5]. Here, the aim is 
to derive for each mechanism, in turn, an energy- 
dissipative equation which is based on a physically 
sound microscopic model. 

Our starting point assumes a matrix crack spanned 
by an unbroken, partially debonded brittle fibre [4] 
(Fig. 3). First, we derive an equation which describes 
the build-up of stress, a(x), in the fibre from the tip of 
the cylindrical debond crack to the plane of  the matrix 
fracture surface [4]: 

a(~c) = ap - (% - od) exp ( - f i x )  (3) 

ap is the maximum stress built up in the debonded fibre 
by friction at the interface: 

ap = eoEr/vf (3a) 

The elastic coefficient, r ,  takes into account Poisson 
contraction of the fibre under load: 

41~v rEm 
fl - (3b) 

Efd(1 + Vm) 

* Present address: BP Research Centre, Sunbury-on-Thames, Middlesex, UK. 
tlc is the minimum length of bonded fibre embedded in a matrix which can be broken in a monotonic tensile test. 
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Figure 1 A schematic diagram showing aligned short fibres randomly 
dispersed in a cracked matrix. 

The fibre stress, ad, at the tip of the debond crack is 
given by 

(7 d = (3c) 

Er, Vr, Em and Vm are the moduli and Poisson's ratios 
of the fibre and matrix, respectively, and Fi is the 
fracture energy of the interface. 

As the load on the fibre increases, its diameter, d, 
decreases (Poisson contraction), and the debond crack 
extends stably, reaching a maximum length only when 
the fibre snaps at a r. Rewriting Equation 3, 

O" r = O'p - -  (O 'p  - -  O ' d )  exp (--flld/2) (4) 

Hence 

. °.) 
l a = ~ In af (5) 

The likelihood that the fibre break is on the same 
plane as the matrix crack is small, even though the 
position of maximum fibre stress coincides with the 
matrix fracture surface. Macroscopic crack growth in 
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Figure 2 A schematic diagram showing the relation between fibre 
pull-out energy and fibre length (after Kelly [1]). 
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Figure 3 The coordinate system of a short, partially debonded fibre 
spanning a matrix crack, b is the depth of that end of fibre least 
buried beneath the surface of the crack plane. Also, a schematic 
diagram showing the stress distribution along the partially debonded 
length of fibre. 

the composite transverse to the direction of fibre align- 
ment is accompanied, therefore, with the pulling out 
of the majority of fibre ends, broken or still intact. 

The energetics of complete fracture of the com- 
posite is based, therefore, on a sequence of events that 
can occur in a damage process zone in front of and in 
the wake of a propagating crack [4, 5]. Energy is 
dissipated during matrix cracking (this is small, some 
300Jm -2 or less), decohesion (debonding) of the 
fibre-matrix interface (the fracture energy Fi is much 
smaller but the total surface area can be enormous), 
fibre breakage (the release of stored elastic strain 
energy in the fibre over its debonded length), and fibre 
pull-out (work done against friction). 

2.1. T o u g h e n i n g  by interfacial d e b o n d i n g  
The contribution this mechanism makes to the tough- 
ness of the composite is in proportion to the total area 
of debonded interface [4, 5]: 

Ga = 81dFiVf/d (b > la/2) (6) 

where b is defined in Fig. 3 and Vf is the fibre volume 
fraction. 

The energy associated with the debonding of a fibre 
can be estimated by substituting for la (Equation 5) 
into Equation 6. In a composite containing short 
fibres where one end of the fibre is close to the matrix 
crack, the maximum length of debond crack, ld, given 
by Equation 5, will be unattainable if the fibre pulls 
out. The model (Equation 6) therefore has to be modi- 
fied for the case where b < ld/2 (Fig. 3): 

Ga = 8bF~ Vf/d (b < ld/2) (6a) 

2.2. T o u g h e n i n g  by fibre f racture  
Under increasing load, the debond crack will continue 
to spread along the interface whose fibre length 
is greater than b from the matrix crack. The fibre 
diameter will decrease steadily until finally snapping. 
A consequence of Poisson contraction is that the rate 
of load build-up in the fibre decreases with distance 
from the tip of the debond crack to the plane of the 
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matrix crack [4] (Fig. 3). When the fibre snaps, only 
some of its stored elastic energy is released since the 
load builds up once more from the broken fibre end 
[4, 5]. An estimation of the dissipated elastic energy 
can be made from a knowledge of  the states of stress 
in the fibre and matrix immediately before and after it 
breaks [4, 5]: 

5 (7  2la (% - aa)2(e -& - 1) 

af = Ef \ 2 2fl 

2%(% - crd)(e -&/z - 1)"~, + ) (b > Id/2) 

(V) 

The energy associated with fibre fracture can be 
estimated by substituting ld (Equation 5) into 
Equation 7. Likewise, the model has to be modified 
when b < ld/2, by replacing Id in Equation 7 with b. 

2.3. T o u g h e n i n g  by fibre pu l l -ou t  
Provided the lengths of protruding fibres have a uni- 
form probability distribution, then the average work 
of pull-out is dependent on the maximum fibre stress 
during pull-out, %, the average fibre pull-out length 
(/p), the elastic coefficient, fl, which accounts for 
Poisson contraction of the fibre, and the coefficient of 
friction at the interface,/~ (which is included in fl) [4]: 

(Gpo) = V f a p ( ( / p ) +  e ~°P> - 1 )  (8) 

The energy associated with fibre pull-out can be 
estimated by substituting the average pull-out length, 
(/p) (predicted in Section 3) into Equation 8. 

3. A statistical model for predicting 
f ibre pull-out length 

The variable strength (and, consequently, pull-out 
length) of a brittle fibre like glass or carbon is to do 
with the distribution of flaws and their size along the 
fibre length. Experiments show that the strength of 
such a material is well described by a Weibull distribu- 
tion equation. On loading a batch of fibres up to a 
stress, a, a fraction of them, P(a), will fail; in its 
simplest form 

P(a) = 1 -- exp [ ( -  0"/O'0) m] 

where m is the Weibull modulus and a 0 is a charac- 
teristic strength. 

By taking into account the cumulative failure 
probability of the fibres with the variation of  tensile 
stress on the fibre along its debonded length, the cum- 
ulative probability of the distribution of pull-out 
lengths can be derived [4]: 

fXop[a(x')](~2~/2{1--P[a(x")]}dx")dx" 
r ( x )  = 1 - 

~/2P[a(x')](~/2{1- P[a(x")]}dx")dx' 

where the pull-out length, lv, is given by 

/. = g - x  
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and a(x) and ld are given by Equations 3 and 5 
respectively. 

The probability of a value of lp between x and 
(x + dx) is therefore 

d___F dx - F'(cr, x) dx 
dx F1 

where F~ is the normalizing factor and F '  (~r, x) is the 
differential of the numerator of Equation 9. This dis- 
tribution assumes that fracture of the fibre is bound to 
occur within the fibre's debonded length. 

When b > ld/2 (Fig. 3), the predicted fibre pull-out 
length is identical to that in the model for a long fibre 
[4], since the stress in the fibre is able to exceed the 
highest possible fibre strength at the matrix crack 
plane. However, when b < la/2 the maximum fibre 
stress never reaches this value. The probability of the 
fibre breaking rather than pulling out intact is given by 

F 2 ~ 2P[a(b)] 

This is twice the cumulative probability of breakage 
of a fibre when subjected to a stress o-(b). The factor of 
two ensures consistency with the fibre debond length 
calculation where fibre failure is assumed to occur 
at the average breaking stress of the fibre. Conse- 
quently, if b = Id/2 then F2 = 1, and all fibres frac- 
ture before pulling out. In the case where F2 < 1, the 
phenomenon of "intact fibre pull-out" occurs. 

The probability of fracture of a fibre at a distance x 
from the fibre debond crack tip is therefore 

F(x) f(x) dx - F2 
F ,  

while the remaining fibres are pulled out intact, the 
probability being 

f(b) dx = (1 - F2)dx 

The total probability of fibre pull-out is therefore 
unity. The fibre pull-out length is 

Ip : b - x (b < la/2) (10) 

Id 
lp - 2 x (b > Id/2) (10a) 

To allow for the uniform probability of the matrix 
crack being located at any point along the fibre length, 
we assume values of b between 0 and l/2. For each 
value of b, i.e. for each crack position, the probability 
of each fibre pull-out length can be calculated and 
summed. Finally, the probability of each point is 
divided by the numerator of crack positions con- 
sidered, to re-normalize the probability function. The 
average fibre pull-out length, (lp), then, for sub- 
stitution into Equation 8, is the length for which the 
cumulative probability distribution is 0.5. 

A computer program was developed to carry out 
this numerical manipulation [6] (see Appendix A). 

4. Predictions of the new model 
4.1. Prediction of fibre p u l l - o u t  l e n g t h  

Fig. 4 shows the predicted average lengths of pulled- 
out fibres, (Iv), for two values of the Weibull modulus 
m. All other values used in the calculation are typical 
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Figure 4 Varia t ion  of  the average  fibre pul l -out  length,  (10), with  
fibre length,  l, for  ( - - - )  m = 7 and  ( ) m = 100 (Equa t ion  10). 

of E-glass fibre epoxy [4]. First, consider m = 100 
which corresponds to a fibre of almost uniform 
strength. The prediction is reminiscent of Kelly's 
prediction [1], i.e. the intact pulling-out of fibres 
produces an increasing average pull-out length with 
increasing length of fibre. But when the fibre length 
exceeds the fibre debond length (between 1 and 2 mm), 
only a proportion of fibres are extracted unbroken, 
the remainder fracturing at the matrix crack plane. 
However, when m = 7, typical of a brittle reinforcing 
fibre like glass or carbon, the behaviour is quite dif- 
ferent. As expected, long fibres exhibit pull-out 
lengths which are asymptotic to the predicted fibre 
pull-out length for an infinitely long fibre. But the 
combination of unbroken pulled-out fibres and those 
pulling out after snapping away from the matrix crack 
plane produces a steadily rising average length of 
pulled out fibre, (lp). There is, therefore, no peak fibre 
pull-out length. 

4.2. Prediction of t o u g h n e s s  
The maximum toughness of a composite containing 
aligned, short, brittle fibres randomly dispersed in the 
matrix can be predicted by summing Equations 6, 7 
and 8. A crude allowance for the random orientation 
of short fibres in a composite can be made by halving 
the maximum toughness of a similar composite con- 
taining randomly dispersed, aligned fibres. (The 
assumption made is that the fibres produce a two- 
dimensional random mat and therefore only one-half 
of them can be considered as aligned parallel to each 
of the two perpendicular directions.) 

Fig. 5 shows the variation of predicted toughness 
with fibre length for m = 100 and m = 7, based on 
Fig. 4. The toughness increases to 95% of ultimate 
when l ~ 6la. For fibres of uniform strength 
(m = 100) the behaviour is similar except when l > ld 
and the toughness rises more slowly due to a reduction 
in fibre pull-out energy. A substantial proportion of 
the energy absorbed is due to the mechanisms involv- 
ing interfacial debonding (Ga) and fibre fracture (Gr). 
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Figure 5 Predicted toughness  ( s u m m a t i o n  o f  Equa t ions  6, 7 and  8 
aga ins t  fibre length for G - ~  m = 7 and  ( ) m = 100. 

Consequently, the peak in average fibre pull-out length, 
(Ip), does not appear in the toughness prediction. 

The predicted maximum toughness of an aligned 
two-dimensional glass-fibre-epoxy mat is about 
11 kJ m 2 (Fig. 5), about a factor 6 or 7 smaller than 
the predicted value of 72 kJ m -2 for a unidirectional 
fibre-matrix ply [5]. 

Friedrich [7] has measured the fracture toughness, 
K~, of an E-glass fibre-PET composite containing 
200#m long fibres (Vf = 0.5), dispersed randomly. 
Using the relation 

G~ = K~/E 

and Friedrich's measured values for the tensile mod- 
ulus, E, of 20 GPa, and Kc of 8 MPam '/2, we cal- 
culate a toughness, Go, of about 3.2 kJ m -2 .  This is in 
good agreement with our predicted value (Fig. 5) and 
supports the validity of our approach. 

5. Conclusions 
A previous method of calculating fibre pull-out 
lengths of a broken composite containing short fibres 
has been reviewed and found to be valid only for the 
case for which it was originally derived, namely, for a 
composite containing short fibres uniformly strong. A 
new model of fibre pull-out for a composite containing 
short brittle fibres has been shown to be extremely 
promising. When combined with models of energy- 
dissipative mechanisms, the new model predicts 
reasonably accurately the toughness of short-fibre 
composites. The model predicts a rising toughness 
with increasing fibre length, finally attaining a con- 
stant value, in contrast with the earlier theory. 
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Appendix A 
The computer program estimates the probability distri- 
bution of both intact (unbroken) and fractured pulled- 
out fibres occurring at many points along the fibre. 
Having found the average pull-out length, (lp), it then 
calculates the average toughness of the composite [6]. 
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The program calculates the fibre pull-out distri- 
bution using an amended form of Equation 9: 

F(x) = 1 -  J°Pbr(x')] dx 

l d/2 P[a(x')] dx' 

The effect of ignoring the probability of survival 
in more highly stressed regions of the fibre is to 
slightly alter the shape of F(x) at small x. The effect 
on the accuracy of the programme is small, and the 
simplification leads to substantially quicker execution. 
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